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Then we can rewrite the Yule-Walker equations, Equation 5.65, in matrix form as

follows,

lR la = lr (5.70)

where la : R1 7→ RQ is the vector of the all-pole parameters for frame l.

Therefore, the least squares solution to the all-pole estimate is given by,

la = lR
−1

lr (5.71)

Note the structure of lR in the definition of Equation 5.68. lR is a Toeplitz matrix

which shows up in many solutions to difference equations, especially in control sys-

tems and signal processing. Its structure makes it quite simple to solve for la using

the Levinson-Durbin algorithm which was introduced by Levinson [42] and then

modified by Durbin [18, 19, 8, 60]. There is also another algorithm called Schür

recursion [66], which is more efficient for parallel implementations.

From the spectral perspective, due to Parseval’s theorem (see Section 24.9.7),

element q of lr, denoted by lr|q is as follows [46],

lr( j) =
1

2π

ˆ

π

−π

lP
◦
d (ω) cos( jω)dω

=
∞

∑
n=−∞

hnh(n+ j) (5.72)

Note that in the spectral form of Equation 5.72, the angular frequency, ω , is treated

as a continuous variable. It is possible to discretize the frequency as we did in the

DFT method by Equation 24.461 so that we obtain the discretized version of Equa-

tion 5.72, namely,

lr( j) =
N−1

∑
0

lP
◦
d (ω) cos(2πk j)

=
N−1−Q

∑
n=0

lhn lhn+ j (5.73)

In the discretized version,

E =
G2

N

N−1

∑
n=0

P(ωk)

P̂(ωk)
(5.74)

Equation 5.74 means that only discrete values of the frequency are contributing to

the error being computed. This means that the minimum error is only valid for the

discrete frequencies within the range of ωk. This re-iterates the fact that if there are

higher frequencies present, they will not be modeled. Note that one other possible

method for computation of the all-pole estimate is to use a discrete cosine transform

through an FFT as apparent by Equation 5.74 See [46] for a complete treatment of
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the spectral path of the solution of the Linear Predictive Coefficients.

Let us return to the Yule-walker equations. As we mentioned, up to the window-

ing step, the LPC method is identical to the direct method of Section 5.3. In the next

step, we will use the short-time autocorrelation (Equation 5.67) for the N-sample

frame and solve Equation 5.71 to compute the LPC coefficients and then follow on

to compute the LPCC features.

5.4.2 LPC Computation

At this point we have arrived at Equation 5.71 which should be solved for every

frame of the signal. As we noted, the Toeplitz structure of the autocorrelation ma-

trix, lR, allows us to use the efficient Levinson-Durbin method to solve the Yule-

walker Equations (Equation 5.70) directly, without having to compute lR
−1, for the,

so called, Linear Predictive Coding (LPC) coefficients, laq,q∈ {1,2, · · · ,Q} and l ∈
{0,1, · · · ,L−1}.

The following pseudo-code represents the steps of the Levinson-Durbin method

as stated by Rabiner and Juang [60] (some typographical errors which existed in

[60] have been corrected here),

Initialize E:

E(0) = lr(0) (5.75)

for (q = 1 to Q),

1.

lκq =

lr(q)−
q−1

∑
j=1

α
(q−1)
j lr(q− j)

E(q−1)
(5.76)

2.

α
(q)
q = lκq (5.77)

3. for (j = 1 to Q),

α
(q)
j = α

(q−1)
j − lκqα

(q−1)
q− j (5.78)

endfor

E(q) = (1− lκ
2
q )E(q−1) (5.79)


