$$
\begin{equation*}
P\left(\mathscr{A}^{\complement} \cap \mathscr{B}\right)=P(\mathscr{B})-P(\mathscr{A} \cap \mathscr{B}) \tag{6.47}
\end{equation*}
$$

Plugging Equation 6.47 into Equation 6.43 we have,

$$
\begin{align*}
P(\mathscr{A} \cup \mathscr{B}) & =P(\mathscr{A})+P(\mathscr{B})-P(\mathscr{A} \cap \mathscr{B}) \\
& =P(\mathscr{A})+P(\mathscr{B})-P(\mathscr{A}, \mathscr{B}) \tag{6.48}
\end{align*}
$$

Property 6.3 may be extended to three events, $\mathscr{A}_{1}, \mathscr{A}_{2}$, and \mathscr{A}_{3} as follows,

$$
\begin{align*}
P\left(\mathscr{A}_{1} \cup \mathscr{A}_{2} \cup \mathscr{A}_{3}\right)= & P\left(\mathscr{A}_{1}\right)+P\left(\mathscr{A}_{2}\right)+P\left(\mathscr{A}_{3}\right)- \\
& P\left(\mathscr{A}_{1}, \mathscr{A}_{2}\right)-P\left(\mathscr{A}_{2}, \mathscr{A}_{3}\right)-P\left(\mathscr{A}_{1}, \mathscr{A}_{3}\right)+ \\
& P\left(\mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{A}_{3}\right) \tag{6.49}
\end{align*}
$$

This can be easily extended to any number of events, but the generalization notation would be somewhat complicated, so it is not shown here. Keep in mind that for a larger number of events, as in the 3-event case, the probabilities of all possible combinations of intersections of events must be subtracted from the sum of the probabilities of all individual events.

Definition 6.36 (Conditional Probability). If $\mathscr{A} \subset \mathscr{X}, \mathscr{B} \subset \mathscr{X}$, and $P(\mathscr{B})>0$, then the probability of event \mathscr{A} given that event \mathscr{B} has occurred is called the conditional probability of \mathscr{A} given \mathscr{B} and is written as,

$$
\begin{equation*}
P(\mathscr{A} \mid \mathscr{B})=\frac{P(\mathscr{A}, \mathscr{B})}{P(\mathscr{B})} \tag{6.50}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
P(\mathscr{A}, \mathscr{B})=P(\mathscr{A} \mid \mathscr{B}) P(\mathscr{B})=P(\mathscr{B} \mid \mathscr{A}) P(\mathscr{A}) \tag{6.51}
\end{equation*}
$$

where $P(\mathscr{A}, \mathscr{B})($ or $P(\mathscr{A} \cap \mathscr{B}))$ is called the joint probability of events \mathscr{A} and \mathscr{B}. Note that Equation 6.51 does not need the requirements that $P(\mathscr{B})>0$ or $P(\mathscr{A})>0$.

Consider the two cases where $\mathscr{A} \subset \mathscr{B}$ and $\mathscr{B} \subset \mathscr{A}$. The condition probability, $P(\mathscr{A} \mid \mathscr{B})$, will have the following properties for each case,

1. $\mathscr{A} \subset \mathscr{B}$,

$$
\begin{align*}
P(\mathscr{A} \mid \mathscr{B}) & =\frac{P(\mathscr{A})}{P(\mathscr{B})} \\
& \geq P(\mathscr{A}) \tag{6.52}
\end{align*}
$$

2. $\mathscr{B} \subset \mathscr{A}$,

$$
\begin{equation*}
P(\mathscr{A}, \mathscr{B})=P(\mathscr{B}) \Longrightarrow P(\mathscr{A} \mid \mathscr{B})=1 \tag{6.53}
\end{equation*}
$$

