6.9.3 Different Types of Mean

Depending on the problem of interest, there have been many different concepts representing the mean of a set of samples. Here, we will define four different such measures which have different usages, depending on our objectives. For these definitions, we assume that we have observed a set of N samples of $X: x \in \mathscr{X}=\mathbb{R}$, denoted by, $\{X\}_{1}^{N}=\left\{x_{n}\right\}, n \in\{1,2, \cdots, N\}$.
Definition 6.78 (Arithmetic Mean). The arithmetic mean, $\mu_{A}\left(X_{1}^{N}\right)$, of a set of N samples of random variable X is given by the following equation,

$$
\begin{equation*}
\mu_{A}\left(X_{1}^{N}\right)=\frac{1}{N} \sum_{n=1}^{N} x_{n} \tag{6.186}
\end{equation*}
$$

The sample mean, estimating the true mean of X, given by Equation 6.179 is arithmetic mean of the set of N observed samples. In most cases, when one speaks of the mean of a sequence, the arithmetic mean is intended.

Definition 6.79 (Geometric Mean). The geometric mean, $\mu_{G}\left(\{x\}_{1}^{N}\right)$, of a set of N samples of random variable X is given by the following equation,

$$
\begin{equation*}
\mu_{G}\left(\{x\}_{1}^{N}\right)=\sqrt[N]{\prod_{n=1}^{N} x_{n}} \tag{6.187}
\end{equation*}
$$

The geometric mean has the tendency of accentuating the effects of non-conforming members of the set. As we saw in Definition 5.5, this contrast with the arithmetic mean is used to define spectral flatness of a spectrum.

Definition 6.80 (Harmonic Mean). The harmonic mean, $\mu_{H}\left(\{x\}_{1}^{N}\right)$, of a set of N samples of random variable X is only defined for a set of positive real numbers, $x_{n}>0 \forall n \in\{1,2, \cdots, N\}$, and it is given by the following equation,

$$
\begin{equation*}
\mu_{H}\left(\{x\}_{1}^{N}\right)=\frac{N}{\sum_{n=1}^{N} \frac{1}{x_{n}}} \tag{6.188}
\end{equation*}
$$

The harmonic mean has the property that it takes on a small value if x_{n} for any n is small. In this sense, it is more related to the minimum of the set than its arithmetic mean. As we shall see, the harmonic mean is used in the k-harmonic means algorithm, which is used for unsupervised clustering and described in Section 11.2.9.

Definition 6.81 (Quadratic Mean (Root Mean Square - RMS)). The quadratic mean or $R M S$, $\mu_{Q}\{x\}_{1}^{N}$, of a set of N samples of random variable X is defined as,

